

PII: S0040-4039(97)01152-0

Pauson-Khand Cycloaddition of α, ω -Allenynes.

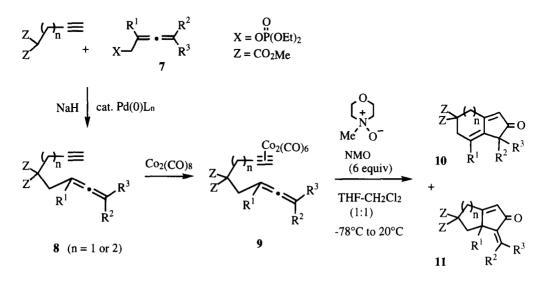

Mohammed Ahmar, Cédric Locatelli, David Colombier and Bernard Cazes*

Laboratoire de Chimie Organique I, associé au CNRS, Université Claude Bernard CPE-Lyon, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne, France.

Abstract : The intramolecular cobalt-mediated reaction of α, ω -allenynes 8 leads to bicyclic dienones 10 and α -alkylidenecyclopentenones 11; regioselectivity depends on the substitution pattern of the allenic moiety. © 1997 Published by Elsevier Science Ltd.

The Pauson-Khand reaction - cobalt-mediated carbonylative cycloaddition of an alkyne and an alkene to cyclopent-2-enone - is presently considered as one of the most synthetically interesting reactions for the preparation of five-membered ring compounds.¹ Particularly, the intramolecular version of this cycloaddition has been widely used for the synthesis of numerous polycyclic compounds^{1,2} from α, ω -enynes. Moreover it has been realized enantioselectively, which opened new routes to enantiopure natural products.³

We recently described⁴ that allenic compounds **3** can be used as "olefinic" partners with alkynes **1** in the Pauson-Khand reaction if this one is promoted by N-methylmorpholine oxide NMO.⁶ This new [2+2+1] cycloaddition of allenes leads at low temperature (-78°C to 20°C) to 4- and 5-alkylidenecyclopent-2-enones **4-6** according to the electronic and steric nature of the allenic substituents (scheme 1).^{4,5}



Scheme 1

An intramolecular carbonylative cycloaddition to bicyclic unsaturated ketones 10 and/or 11 could be easily envisioned from α,ω -allenynes 8 (scheme 2). However the overall result of this reaction might be

impeded in its first step, the formation of the hexacarbonyldicobalt complex 9 from 8, because $Co_2(CO)g$ is known to promote the polymerization of allenic compounds.⁷ We report here the results of our first investigations in this field.

The synthesis of several α,ω -allenynes 8 [1,2-dien-7-ynes 8a-d (n = 1) and 1,2-dien-8-ynes 8e,f (n = 2)] required for this study was realized via the palladium-catalysed substitution of the phosphates 7 of α -allenic alcohols⁸ by acetylenic malonates as depicted in scheme 2.

scheme 2

An initial experiment was carried out with the simplest unsubstituted allenyne 8a (R¹ = R² = R³ = H). Its treatment under the experimental conditions developed previously^{4,5} (addition of 6 equivalents of NMO into a 1:1 CH₂Cl₂-THF solution of allenyne 8 at -78°C) led to no defined products, while this allenyne was unrecovered. This unsuccessful reaction could be explained by the afore-mentioned polymerization of the allenic moiety which might be faster than the formation of the hexacarbonyldicobalt complex 9a. This was likely to occur since it turned out that allenynes 8b-f (n = 1 or 2) for which the allenic moieties are more sterically hindered and less prone to interact with Co₂(CO)₈ led effectively to the expected bicyclic ketones 10b-f and 11b-f (see Table).⁹

With gem-disubstituted allenes **8b** and **8e**, ketones **10b** and **10e** were obtained very regioselectively but with rather low yields (entries 1 and 4). Further reactions with allenynes **8c,d,f** which are substituted on both ends of the allenic unit led more efficiently to bicyclic ketones **10** and 11^{10} (entries 2,3 and 5). Regioselectivity was shown to depend on the substitution pattern of allenynes. 1,3-Disubstitution of the allenic moiety led to about equal amounts of ketones **10c,f** and **11c,f** (entries 2 and 5) while regioselectivity was enhanced towards dienone **10d** with a trisubstituted allene (entry 3).

Entry	α,ω -Allenynes 8 (Z = CO ₂ Me)	Bicyclic cyclopentenones 10, 11	Ratio* 10/11	Yield % ** 10 + 11
1	8b Z ← = CH ₃	$ \begin{array}{c} Z \\ Z \\ CH_3 \end{array} = 0 \qquad \begin{array}{c} Z \\ Z \\ H_3C \end{array} = 0 \\ H_3C $ 10b 11b	90/10	22
2	$\mathbf{g}_{\mathbf{k}} \mathbf{z} $	$Z = CH_3 \qquad Z = O = O = O = O = O = O = O = O = O =$	50/50	31
3	$\mathbf{g}_{\mathbf{d}} \xrightarrow{Z} \underbrace{\Xi}_{CH_3} \underbrace{\Sigma}_{CH_3}$	$ \begin{array}{c} Z \\ Z \\ Z \\ 10d \\ H_3C \\ CH_3 \\ H_3C \\ $	80/20	45
4	$\begin{array}{c} = \\ 8e Z \\ Z CH_3 \end{array} $	$Z \longrightarrow O Z \longrightarrow O Z \longrightarrow O O O O O O O O O O O O $	100/0	10
5	$\mathbf{s}_{\mathbf{z}} = \mathbf{s}_{\mathbf{z}} $	$Z \xrightarrow{CH_3} Z \xrightarrow{T} O \xrightarrow{T} O \xrightarrow{T} O$ 10f (E)-11f	45/55	50

Table : N-Methylmorpholine oxide-promoted Pauson-Khand cycloaddition of α, ω -allenynes 8.

* Ratios 10/11 were estimated from GLC and/or ¹H NMR analysis of the mixtures of both isomers 10 and 11 which were inseparable via classical flash-chromatography.

** Yields (10 + 11) refer to materials isolated through flash-chromatography

This work has demonstrated for the first time the feasibility of performing the tertiary amine oxidepromoted Pauson-Khand cycloaddition of α,ω -allenynes¹¹ the synthetic value of which is currently prospected in our group. It complements recent studies about related metal-mediated cycloaddition procedures which lead to bicyclic dienones (type **10**)¹² or α -methylenecyclopentenones (type **11**).¹¹

References and Notes :

- a) Pauson, P.L. Tetrahedron 1985, 41, 5855-5860; b) Shore, N.E. Chem. Rev. 1988, 88, 1081-1119;
 c) Shore, N.E. Org. React. (N.Y) 1991, 41, 1-90; d) Shore, N.E. In Comprehensive Organic Synthesis; Trost, B.M.; Fleming, I., Eds; Pergamon: Oxford 1991, Vol. 5, pp. 1037-1064; e) Shore, N.E. In Comprehensive Organometallic Chemistry II; Wilkinson, G.; Stone, F.G.A.; Abel, E.W., Eds; Pergamon: Oxford 1995, Vol. 12, pp. 703-739.
- For recent reviews, see : a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R.J.Chem. Rev. 1996, 96, 635-662; b) Thebtaranonth, C.; Thebtaranonth, Y. Cyclization Reactions; CRC Press Inc: Boca Raton, 1994, pp. 289-298; c) Harrington, P.J. Transition Metals in Total Synthesis; J. Wiley & Sons: N.Y, 1990, pp. 241-301.
- a) Castro, J.; Sörensen, H.; Riera, A.; Morin, C.; Moyano, A.; Pericàs, M.A.; Greene, A.E. J. Am. Chem. Soc., 1990, 112, 9388-9389; b) Poch, M.; Valenti, E.; Moyano, A.; Pericàs, M.A.; Castro, J.; De Nicola, A.; Greene, A.E. Tetrahedron Lett. 1990, 31, 7505-7508; c) Castro, J.; Moyano, A.: Pericàs, M.A.; Riera, A.; Greene, A.E. J. Am. Chem. Soc. 1994, 116, 2153-2154.
- 4. Ahmar, M.; Antras, F.; Cazes, B. Tetrahedron Lett. 1995, 36, 4417-4420.
- 5. Ahmar, M.; Chabanis, O.; Gauthier, J.; Cazes, B., preceding communication in this issue...
- 6. a) Shambayati, S.; Crow, W.E.; Schreiber, S.L. *Tetrahedron Lett.* **1990**, *31*, 5289-5292. b) Jeong, N.; Chung, Y.K.; Lee, B.Y.; Yoo, S.E. *Synlett*, **1991**, 204-206.
- 7. Greenfield, H.; Wender, I.; Wotiz, J.H. J. Org. Chem. 1956, 21, 875-878.
- a) Djahanbini, D.; Cazes, B.; Gore, J. Tetrahedron Lett. 1984, 25, 203-206; b) Djahanbini, D.; Cazes, B.; Gore, J. Tetrahedron 1987, 43, 3441-3452.
- 9. Typical procedure is as follows (entry 3) : allenyne 8d (1 mmol) was added to a solution of Co₂(CO)8 (1.2 mmol) in CH₂Cl₂ (10 mL) at O°C. This solution was stirred at room temperature for 2 hours and filtered through a small plug of celite®; washing with ether and evaporation of solvents gave the crude dicobalt complex 9d. This complex was diluted in CH₂Cl₂-THF (1:1) (20 mL) and treated at -78°C with N-methylmorpholine oxide NMO (6 equiv with respect to the starting material 8d). The mixture was allowed to return to room temperature in 1 hr and stirred again 2 hrs. After filtration over celite®, washing with ether and evaporation of solvents, flash-chromatography on silicagel (petroleum ether/ether 50/50) gave an oil (Rf = 0.25, 45% yield) composed of the two isomers 10d and 11d which were inseparable ; their ratio 10d/11d = 80/20 was mesured via GLC and ¹H NMR.

10d : ¹H NMR (CDCl3, 200 MHz) δ ppm, 1.07 (s, 6H); 2.91 (d, ³J = 4.4 Hz, 2H); 3.23 (d, ⁴J_{allyl} = 1.3 Hz, 2H); 3.72 (s, 6H); 5.84 (dt, ⁵J = 1.6 Hz and ³J = 4.4 Hz, 1H); 5.91 (broad s, 1H)

11d: ¹H NMR (CDCl₃, 200 MHz) δ ppm, 1.92 (s, 3H); 2.26 (s, 3H); 1.15-1.3 (m, 1H); 1.6-1.8 (m, 1H); 2.95 (dd, ³J = 12.8 Hz and ³J = 8 Hz); 3.27 (broad s, 2H); 3.74 (s, 3H); 3.81 (s, 3H); 6.03 (broad s, 1H).

- 10. α -Ethylidenecyclopent-2-enone **11c** (as well as ketone **11f**) was obtained as the E-stereoisomer as shown by the downfield vinyl hydrogen atom at $\delta = 6.61$ ppm (qd, ³J = 7.2 Hz and J_{allyl} = 1.8 Hz) and upfield allyl methyl group at $\delta = 1.9$ ppm (t, ³J = 7.2 Hz). For ¹H NMR data about α -methylene cyclopent-2enones, see : Jacobi, P.A.; Brielmann, H.L.; Cann, R.G. J. Org. Chem. **1994**, 59, 5305-5316.
- 11. A previous communication reported on unsuccessful results about the same reaction carried out under thermic conditions : Kent, J.L.; Wan, H.; Brummond, K.M. *Tetrahedron Lett.* **1995**, *36*, 2407-2410. This paper describes three examples of a related Mo(CO)6-mediated cycloaddition of allenynes to α -methylene cyclopentenones which works only with unsubstituted allenynes.
- For Fe, see : Shibata, T.; Koga, Y.; Naraska, K. Bull. Chem. Soc. Jpn. 1995, 68, 911-919. For one example of a Ti-catalysed cycloaddition of an 1,4-allenyne, see: Hicks, F.A.; Kablaoui N.M.; Buchwald, S.L. J. Am. Chem. Soc. 1996, 118, 9450-9451.